Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

نویسندگان

  • Lin Xu
  • Noam Ophir
  • Michael Menard
  • Ryan Kin Wah Lau
  • Amy C Turner-Foster
  • Mark A Foster
  • Michal Lipson
  • Alexander L Gaeta
  • Keren Bergman
چکیده

We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire.

We demonstrate error-free wavelength conversion of 28 GBaud 16-QAM single polarization (112 Gb/s) signals based on four-wave mixing in a dispersion engineered silicon nanowire (SNW). Wavelength conversion covering the entire C-band is achieved using a single pump. We characterize the performance of the wavelength converter subsystem through the electrical signal to noise ratio penalty as well a...

متن کامل

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Data transmission in optical systems and increased transmission distance capacity benefit by using optical amplification wavelength division multiplexing (WDM) technology. The combination of four waves (FWM) is a non-linear effect in the wavelength division multiplex (WDM), when more than two wavelengths of light in a fiber launch will occur. FWM amount depends on the channel, the channel spaci...

متن کامل

Phase-matching and Nonlinear Optical Processes in Silicon Waveguides.

The efficiency of four-wave-mixing arising from Raman and non-resonant nonlinear susceptibilities in silicon waveguides is studied in the 1.3 - 1.8microm regime. The wavelength conversion efficiency is dominated by the Raman contribution to the nonlinear susceptibility, and high conversion efficiencies can be achieved under the phase-matching condition. In this context, dispersion in silicon wa...

متن کامل

Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide

We experimentally demonstrate polarization-insensitive all optical wavelength conversion of a 10-Gb/s DPSK data signal based on four-wave mixing in a silicon waveguide with an angled-pump scheme. Dispersion engineering is applied to the silicon waveguide to obtain similar four-wave mixing conversion performances for both the TE and TM modes. Bit-error rate measurements are performed and error-f...

متن کامل

One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide.

We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shift-keying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six multicast signals show error-free performance with power penalty less than 3.8 dB.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2011